Online Bellman Residual Algorithms with Predictive Error Guarantees

نویسندگان

  • Wen Sun
  • J. Andrew Bagnell
چکیده

We establish a connection between optimizing the Bellman Residual and worst case long-term predictive error. In the online learning framework, learning takes place over a sequence of trials with the goal of predicting a future discounted sum of rewards. Our analysis shows that, together with a stability assumption, any no-regret online learning algorithm that minimizes Bellman error ensures small prediction error. No statistical assumptions are made on the sequence of observations, which could be non-Markovian or even adversarial. Moreover, the analysis is independent of the particular form of function approximation and the particular (stable) no-regret approach taken. Our approach thus establishes a broad new family of provably sound algorithms for Bellman Residual-based learning and provides a generalization of previous worst-case result for minimizing predictive error. We investigate the potential advantages of some of this family both theoretically and empirically on benchmark problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Online Bellman Residual and Temporal Difference Algorithms with Predictive Error Guarantees

We establish connections from optimizing Bellman Residual and Temporal Difference Loss to worstcase long-term predictive error. In the online learning framework, learning takes place over a sequence of trials with the goal of predicting a future discounted sum of rewards. Our first analysis shows that, together with a stability assumption, any no-regret online learning algorithm that minimizes ...

متن کامل

Global Optimization for Value Function Approximation

Existing value function approximation methods have been successfully used in many applications, but they often lack useful a priori error bounds. We propose a new approximate bilinear programming formulation of value function approximation, which employs global optimization. The formulation provides strong a priori guarantees on both robust and expected policy loss by minimizing specific norms ...

متن کامل

Robust Approximate Bilinear Programming for Value Function Approximation

Value function approximation methods have been successfully used in many applications, but the prevailing techniques often lack useful a priori error bounds. We propose a new approximate bilinear programming formulation of value function approximation, which employs global optimization. The formulation provides strong a priori guarantees on both robust and expected policy loss by minimizing spe...

متن کامل

Robust Approximate Bilinear Programming Robust Approximate Bilinear Programming for Value Function Approximation

Existing value function approximation methods have been successfully used in many applications, but they often lack useful a priori error bounds. We propose a new approximate bilinear programming formulation of value function approximation, which employs global optimization. The formulation provides strong a priori guarantees on both robust and expected policy loss by minimizing specific norms ...

متن کامل

Robust Value Function Approximation Using Bilinear Programming

Existing value function approximation methods have been successfully used in many applications, but they often lack useful a priori error bounds. We propose approximate bilinear programming, a new formulation of value function approximation that provides strong a priori guarantees. In particular, this approach provably finds an approximate value function that minimizes the Bellman residual. Sol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015